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The time-history of the development of the three-dimensional transition features in
a nominally two-dimensional flow configuration is established for Reynolds number
220 in a cylinder wake. The identification of the successive stages that evolve very fast
during experiments is possible by means of direct numerical simulation. The physical
processes related to the creation of streamwise and vertical vorticity components and
their impact on the spanwise waviness of the main von Kármán vortex filaments
are analysed by means of the Craik–Leibovich shearing instability mechanism and
a comparative discussion is given with respect to the elliptic stability theory. This
study proves the existence of a further stage in the three-dimensional transition,
which substantially modifies the regular spanwise undulation. This is a systematic
and repetitive development of natural vortex dislocations in the near wake. The
definition of this kind of structure is provided, as well as its properties related to a
drastic reduction of the fundamental frequency and to the selection of a lower path
in the Strouhal–Reynolds number relation. The induced amplitude modulation of the
flow properties along the span is also evaluated. Quantification of these properties is
carried out by using wavelet analysis and autoregressive modelling of the time series.
The reasons for the development of natural vortex dislocations are analysed and
related to specific modulations of the spanwise structure of the longitudinal velocity
upstream separation. From this part of the study an optimum shape for the spanwise
distribution of this component can be specified, able to trigger the vortex dislocations
in wake flows and therefore useful to apply in the context of stability theory analyses
and in further DNS studies.

1. Introduction
The transition to turbulence in the wake of bluff bodies has been the objective

of a considerable number of studies over the whole of the last century from both
an experimental and numerical point of view. In the last decade, owing to advanced
experimental methodologies for velocity field measurements and flow visualizations,
an ensemble of complex physical phenomena related to the three-dimensional tran-
sition has been studied in this category of flows and has contributed to a better
understanding of the flow patterns observed since the 1950s. Simultaneously, due
to the increased capabilities of supercomputers, a smaller number of numerical in-
vestigations of the three-dimensional transition for the same category of flows has
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appeared, based on direct numerical simulation (DNS). In a previous work of ours
(Persillon & Braza 1998b) a summary of transition features investigated numerically
and on the basis of experiments was reported. A comprehensive discussion on ex-
perimentally investigated wake transition phenomena is given by Williamson (1996).
Although since the 1980s the advances in numerical methodologies have allowed
simulation of three-dimensional separation and of complex unsteady vortex struc-
tures in flows with simple configurations (flat-plate boundary layer, free shear layers,
jets, . . .), there are many fewer three-dimensional direct simulations of flows past
bluff bodies. This is due to difficulties arising from the simultaneous presence of the
non-rectilinear form of the solid wall and of the unbounded, non-confined character
of these flows, therefore requiring an extremely high number of degrees of freedom
to obtain the complete established phase of these kinds of transition features. The
study of Thompson, Hourigan & Sheridan (1994) was among the first to simulate the
onset of spanwise undulations as a first step to three-dimensional transition in the
flow past a circular cylinder. The same features, as well as the simulation of the first
discontinuity frequency drop, were obtained by Zhang et al. (1996) and by Mittal
& Balachandar (1995). Persillon, Braza & Jin (1995) simulated the formation of the
discontinuity region in the Strouhal–Reynolds number (St, Re) relation, delimited by
two frequency steps in the Reynolds number range 180–300, and the same research
team has quantified the discontinuous kinetic energy distribution within the same
Reynolds number range, contributing to the explanation of the formation of this
transition feature.

Simultaneously with these studies attempting to simulate directly these phenomena
by using the complete Navier–Stokes equations, methods based on linear stability
theory have been able to determine the creation of mode A undulation by perturb-
ing the two-dimensional vortex pattern obtained by two-dimensional Navier–Stokes
simulations. These studies have quantified the expected wavelength and the critical
Reynolds number for its appearance (Barkley & Henderson 1996) by using Floquet-
type spanwise perturbations of the linearized equations of motion. In their study,
the subcritical nature of the secondary instability related to mode A was proved by
considering a discretized form of the Stuart–Landau equation. As their linear Floquet
stability analysis takes into account the influence of infinitesimal perturbations, it
is expected that the critical Reynolds number evaluated is slightly higher than in
the physical reality. Indeed, the additional influence of finite-amplitude perturbations,
inherent to the alternating nature of the vortex shedding, is decisive in creating the
first discontinuity in the St, Re relation as an abrupt step. In this sense, the approach
using the three-dimensional Navier–Stokes equations offered the possibility of taking
into account these effects and quantifying the critical Reynolds number for the first
discontinuity at a lower value (Re = 187) than that predicted by the linear theory
(Persillon & Braza 1998b).

This study has also evaluated the spanwise wavelength shortening that occurs as
the Reynolds number further increases in the range 240–260, related to mode B
waviness.

However, even with the current capabilities of supercomputers, the evaluation of
this critical Reynolds number value remains a non-trivial task, needing a considerable
number of three-dimensional time-dependent simulations. For these reasons, the linear
stability theories remain an interesting approach for a first assessment of critical
parameters in three-dimensional transition using reasonable CPU times. In the same
context of linear Floquet theory, Henderson (1997) has reported that mode B is a
supercritical bifurcation and has determined the critical Reynolds number for this
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change. The same study provided direct Navier–Stokes simulations for Reynolds
numbers in the vicinity of the mode B range and also at Reynolds number 1000.

The amplification of the instability process and its spatial properties can indeed
be evaluated by the Navier–Stokes approach, through the evolution of the maximum
spectral amplitude of the vortex shedding motion. This strategy, following experimen-
tal studies of global modes in wakes by Goujon-Durand, Jenffer & Wesfreid (1994)
has been adopted in the study by Persillon & Braza (1998b) and has provided the
mapping and the variation laws of the amplification process of the von Kármán
instability along the rear axis as a function of Reynolds number, by means of direct
three-dimensional simulation. However, the amplitude variations along the spanwise
direction, due to the secondary instability, have not yet been assessed. This is one of
the objectives of the present study.

Beyond the spanwise undulations discussed above, which provide quasi-periodic
spanwise variations of the velocity signals, earlier experimental works by Roshko
(1954) reports the existence of a transition regime for the wake past the cylinder, where
he found distinct irregularities in the wake velocity fluctuations. It was suggested later
by Bloor (1964) that the low-frequency irregularities measured in the wake are linked
to three-dimensional motion that would progressively contaminate the downstream
flow and produce turbulent motion. This more chaotic behaviour of the motion
may be linked to further transition features other than the spanwise modes. A main
objective of the present paper is to analyse the existence of additional transition
features which would modify the spanwise undulated structure as a systematic route
to turbulence, and would be associated with the observed irregular character of the
flow.

In the case of free shear flows, the vortex rows shed downstream may form cells of
different frequency as has been experimentally obtained by Browand & Troutt (1980,
1985). Due to this kind of irregularity, the vortex rows lose locally their continuity
and develop ‘vortex defects’ or vortex dislocations, which appear naturally in the
flow. This kind of structure may have a systematic appearance and lead to formation
of a ‘treillis’ structure as has been recently shown by field measurements using hot-
wire combs (Vincendeau 1995) and by direct and large-eddy simulations of forced
mixing layers (Lesieur, Comte & Métais 1995). Concerning bluff body wakes, natural
vortex dislocations have been obtained experimentally in flows past cones, where the
geometric variation of the diameter locally creates a variation of the Strouhal number
along the span (Gaster 1969). A remarkably good agreement with the cells formed
has been obtained by the numerical simulations of Jesperson & Levit (1991) for this
kind of wake flow.

For the cylinder wake, Williamson (1992) discovered the existence of ‘spot-like’,
natural vortex dislocations and related them to velocity fluctuations in the near wake.
In order to provide a more regular and systematic appearance of their dynamic
characteristics, a considerable part of that study was devoted to the investigation of
forced vortex dislocations triggered by a ring at the cylinder median section. Therefore,
apart from that first study showing the existence of natural vortex dislocations, the
appearance of this kind of structure as a systematic transition feature remains an
open question in bluff body wakes. Moreover, only very few attempts to analyse this
kind of structure as an inherent transition feature by direct numerical simulation
exist, due to very severe requirements in spanwise length and number of grid points
needed. In this context, Persillon, Braza & Williamson (1997) and Persillon & Braza
(1998a) have shown that vortex dislocations are spontaneously formed in the near
wake of a circular cylinder in the Reynolds number range corresponding to a clearly



4 M. Braza, D. Faghani and H. Persillon

obtained development of mode A and the detected structures have been found in
good qualitative agreement with the experiment. That study is a starting point for
the present one. There is still a poor understanding of the main dynamic properties
characterizing and qualifying a modification of the spanwise vortex structure as a
natural vortex dislocation and the reasons for the appearance of this kind of structure
are not yet thoroughly known. Furthermore, the impact of vortex dislocations on the
creation of different kinds of fluctuations related to the inception of turbulent motion
needs to be quantified, in order to establish a precise scenario of the transition to
turbulence in bluff body wakes and to examine whether natural vortex dislocations
constitute a successive step of transition, modifying the spanwise undulation. In view
of this discussion, the objectives of the present paper are summarized as follows:

(i) Analyse the inherent way that three-dimensionality is established in the flow
around the cylinder, departing from the initial stage of a two-dimensional flow
beyond the first bifurcation and governed by the alternating von Kármán vortex
pattern. This study aims at a clear identification of the scenario of the first steps in
the three-dimensional transition in bluff body wakes.

(ii) Study the mechanisms responsible for the spontaneous creation of organized
spanwise undulations on the originally rectilinear alternating vortex rows. Explain the
formation of the expected modes by means of different stability theory considerations.

(iii) Track the existence of further inherent modifications of the undulated vortex
rows by a detailed investigation of the three-dimensional vorticity and velocity fields.
In particular, the existence of a regular appearance of natural vortex dislocations is
investigated.

(iv) Examine the reasons and main physical mechanisms responsible for the devel-
opment of natural vortex dislocations; in particular, suggest the nature of perturbing
factors typically able to trigger the natural vortex dislocations pattern as a systematic
way of transition to turbulence.

The strategy chosen to achieve these objectives is the physical analysis of time
and space signals of key quantities (vorticity and velocity components and pressure)
obtained by direct numerical simulation of the flow past a circular cylinder of ‘infinite’
span (e.g. without using end plates). From a computational point of view, the rather
high spanwise length of 12D is considered (in respect of CPU needs for a direct
simulation), allowing investigation of these phenomena. The value of 220 chosen for
the Reynolds number falls well within the range where mode A instability is fully
developed.

Section 2 refers briefly to the governing equations and outlines the numerical
method. Section 3 analyses the onset of three-dimensionality, a prerequisite step for
the three-dimensional transition, preceding further modifications due to the vortex
dislocations. A critical discussion on the fundamental mechanisms governing the span-
wise undulation is provided, as well as the evaluation of the related wavelength, by
using a long spanwise dimension compared with the previous studies. An assessment
of this transition feature is also provided by means of stability theory consider-
ations. A comparative discussion and synthesis based on these different approaches
is given. Section 4 examines the natural vortex dislocation pattern by presenting the
time-dependent evolution of vorticity fields along with some flow visualization. A
definition of this kind of structure is provided, as well as its impact on the transition
process. Subsection 4.1, entitled ‘time–frequency analysis’ is devoted to a detailed
quantification of the different properties related to the vortex dislocations. Subsec-
tion 4.2 analyses upstream spanwise mechanisms related to causes of natural vortex
dislocation formation in the near wake. Section 5 presents the conclusions of this study.
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2. Theoretical formulation and numerical method
The governing equations for the flow of an incompressible viscous fluid past a

circular cylinder are the continuity and the Navier–Stokes equations. The equations
are written in a general curvilinear coordinate system normalized by the cylinder
diameter D and the uniform upstream velocity. A detailed presentation of these
equations and of the numerical method can be found in Persillon & Braza (1998b).
The governing equations are written in general curvilinear coordinates in the (x, y)-
plane while the z-component (in the spanwise direction) is in Cartesian coordinates.

The numerical method is based on the full three-dimensional Navier–Stokes equa-
tions for an incompressible fluid. The numerical procedure is summarized as follows.
The pressure–velocity formulation is used along with a predictor–corrector pressure
scheme similar to the one reported by Amsden & Harlow (1970) but extended to the
case of an implicit formulation (Braza, chassaing & Ha Minh 1986). The temporal
discretization is done by adopting the Douglas (1962) fractional scheme in an alter-
nating direction implicit formulation. The boundary conditions are those specified in
Persillon & Braza (1998b). At the spanwise free edges of the computational domain,
periodic boundary conditions are applied. A comparison of Neumann type boundary
conditions and of periodic ones with respect to their ability in simulating the devel-
opment of three-dimensionality and of spanwise undulations has been performed in
a number of our studies and proved their equal validity (Persillon & Braza 1998a;
Bouhadji & Braza 1998). Another useful element of the present numerical method is
the three-dimensional extension of non-reflecting type boundary conditions, based on
the work by Jin & Braza (1987) in two dimensions.

In the following sections the results are discussed according to the phenomenology
of the different classes of vortex structures obtained by the direct simulation and
shown by contour plots of flow quantities, in qualitative comparison with Williamson
(1992). The way that the three-dimensional motion is progressively established in
the flow system is analysed. The numerical parameters were carefully chosen in a
previous study of ours (Persillon & Braza 1998b). The grid sizes are (150× 80× 62)
to (160 × 100 × 100). The numerical simulations are carried out for a rather long
spanwise length value (12D) and several comparisons are done with a small spanwise
length of 3.75D: figures 3a and 5a, 3b and 5b, 3c and 5c corresponding to the small
and large spanwise lengths. It is shown that the same kind of spanwise undulation
and of streamwise vortex structures develop (as detailed in § 3) in both cases. These
results ensure that the studies with the two aspect ratios give similar results. In the
field representations of the different contours of flow quantities, a dimensionless shift
of 185 has to be added to the displayed time values, in order to obtain correspondence
with the time values in § 4.1.

3. The successive steps to three-dimensionality from a nominally
two-dimensional flow configuration

One of the main themes of the present study is to understand how three-dimensional
structures develop from nominally two-dimensional wake flows. Direct numerical
simulation offers the possibility of studying these stages by examining the flow
history from the beginning of the computation, to beyond the first two-dimensional
bifurcation, whereas these steps evolve very fast in a physical experiment. The initial
conditions are those of an established two-dimensional flow with vortex shedding
providing a rectilinear configuration of alternating vortex rows along the span. During
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the simulation, the way the flow progressively loses its two-dimensional character will
be studied using the small numerical and truncation errors that play the role of
small perturbations unavoidably existing in any physical experiment. In addition,
a perturbation on the w velocity component constituting a white noise of order
10−4Uupstream is applied in the inlet section of the computational domain in order to
shorten the transient phase of the simulation. This order of magnitude is even less
than the smallest turbulent intensity of the inlet section of wind tunnel experiments,
including those of reference in the present study. Similar results have been obtained
with a different amplitude level of white noise, still very small, of order 10−3Uupstream,
concerning the onset of the secondary instability and the organization of w in coherent
cells along the span. Therefore, as long as the imposed perturbations are small, the
evolution of the flow system is independent of the perturbation and shows only
inherent characteristics. Moreover, very long computations have also been performed
without any perturbation in w. Again, the flow develops the three-dimensional effects
and mode A development, but after a much longer transient phase, as was described
in Persillon & Braza (1998b). In this case, the truncation and round-off errors played
the role of perturbing factors to the flow system, which follows the same route to
three-dimensional transition although their (random) distribution is different along
the span. In the present study, random distributions for the w component are chosen,
because otherwise preferential amplification or damping of specific three-dimensional
modes would occur. That is not the objective of the present study, which focuses on
inherent characteristics. Choosing specific distributions (non-random) of w concerning
the amplitude and wavelength along the span would be a very interesting future way
to study the forcing of secondary instability and bypass transition.

After a long transient phase during which the flow remains two-dimensional, the w
velocity component (in the spanwise direction) progressively increases. The first stages
of this evolution are proven to obey a linear growth up to dimensionless time value
150, as is shown in the log(A) versus period evolution (figure 1a), A being the amplitude
of w oscillations, followed by the nonlinear phase. Soon after, this component starts
to be organized into distinct cells, figure 1(b). As is expected from the continuity
equation for an incompressible fluid, this pattern is followed by the appearance of
organized counter-rotating cells of the streamwise vorticity component ωx along the
span, shown at time t = 780 in figure 2. The birth of streamwise vorticity is due
to the progressive development of the w component as Reynolds number increases,
owing to the influence of the small perturbations mentioned before. Under the action
of the progressive increase of the streamwise vorticity, the two-dimensional main
alternating vortices display a weak regular spanwise undulation. A perspective view
of this initial three-dimensional modification of the originally rectilinear alternating
vortices is shown in figure 3. The birth of this configuration is directly related to
the amplification of the w component fluctuations and of the streamwise vorticity,
interacting with the von Kármán vortex rows in a similar way to the mechanism
identified for the spanwise undulation of vortices past a splitter plate by Lasheras &
Meiburg (1990). In their study, the birth of streamwise vortex filaments was a result
of cross-stream perturbations interacting with the main vortex rows which become
undulated. This pattern was called mode 1. In the wake past a circular cylinder, this
fundamental spanwise modification was discovered by Williamson (1992) and was
called mode A. The present DNS precisely reveals the successive stages undergone by
the flow transition prior to the establishment of the spanwise undulation.

It appears that this spanwise undulation is a general phenomenon characterizing
the first steps of the three-dimensional transition in a wide range of wakes, as has
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Figure 1. (a) Time evolution of the w velocity component, (x/D, y/D, z/D = 1.4, 0, 1.0) (top);
log[amplitude(w)] (bottom). (b) Iso-contours of the w velocity component at the initial stages of the
flow, t = 280, Re = 220. (Two spanwise lengths are joined for a better visibility of the structures.)

been shown by our recent direct simulations of flows past wings at high incidence in
incompressible regime (Hoarau et al. 2000) and also in the compressible (transonic)
regime by Bouhadji & Braza (1998). In the present incompressible flow past the
cylinder, at higher time values the streamwise vortices become more pronounced
and inception of them occurs between two main alternating eddies in the formation
region (figure 4). Then, the streamwise vortices travel downstream and progressively
migrate towards the wake shear layer, in the convection region. Figure 5(a–c) shows
the history of these stages related to the streamwise vortices formation and to the
progressive development of mode A. It is found that the strength of the spanwise
undulation increases from time t = 680 to t = 740 with the simultaneous increase of
streamwise vorticity that forms progressively counter-rotating ‘braid’ like structures
(see pairs of red and yellow vortices in figure 5a–d).
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Figure 2. Iso-vorticity surfaces, ωx = 0.025, t = 780.
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Figure 3. (a) A perspective view of the vorticity field in the near wake, ωx = 0.25, t = 780, Re = 220.
(b, c Iso-vorticity surfaces ωx = ωz = 0.25: (b) t = 980, compare with figure 5(b) (s2 = 12D);
(c) t = 1070, compare with figure 5(c). The spanwise length for the numerical simulations was
3.75D; compare with figure 5(a, b, c) respectively for spanwise length 12D.

Figure 4. View of the alternating and streamwise vortex structures topology in the near wake.
Iso-vorticity surfaces ωx = ωz = 0.25.
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Figure 5. Iso-vorticity surfaces ωx = ωz = 0.25; (a) t = 680, (b) t = 740, (c) t = 780, (d) t = 800,
(e) t = 820, (f) t = 840, (g) t = 960.
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Figure 6. (a) Spanwise evolution of the instantaneous vertical velocity component;
(b) its spectral analysis. x/d = 1.481, y/d = −0.275.

The undulation of mode A, that occurs as an inherent characteristic of the flow
obtained by the direct numerical simulation, clearly appears in the spanwise evolution
of the vertical velocity component (figure 6) which displays a spanwise oscillation
with a regular wavelength. In order to quantify the wavelength, a spectral analysis
of this evolution is performed by means of fast Fourier transform (figure 6b). The
most predominant spatial mode is found at 0.1171, corresponding to a wavelength
λz/R = 8.54 (λz/D = 4.27). This value is in agreement with the range provided by
experimental results, as shown in figure 8. As indicated by the experimental results,
a range of mode A wavelength values exists, varying from 3 to 4.5. This dispersion
is due to phases of the flow where the mode A pattern is less regular. This feature
is captured by the present simulation, where mode A becomes more irregular, as for
example in the time interval [800; 840]. This irregularity is associated with a further
striking modification of the three-dimensional structure of the main, alternating vortex
rows, analysed in § 4.

The origins of the spanwise undulation have been commented on in the work by
Persillon & Braza (1998b) on the basis of the Navier–Stokes fully nonlinear approach
and by Barkley & Henderson (1996) on the basis of Floquet (linear) stability analysis.
Their study has demonstrated that after perturbing the two-dimensional configuration
of the wake vortices by Floquet modes the solution of the linearized equations of
motion leads to amplification of the secondary instability and to the appearance
of the spanwise undulation. The wavelength according to their study is reported
in figure 8 below, together with the DNS result by Persillon et al. and with those
from other instability theories considered in the present study. The Floquet analysis
is theoretically able to take into account the mode interaction and influence of
the whole topology of the vortices and it is a most promising approach. For this
reason the two-dimensional configuration to be used has to preserve the alternating
vortex pattern for the whole downstream distance and not only in the very near wake
and therefore to ensure the correct expansion rate of the wake. Usually, for the sake
of mesh size reduction, the alternating property is not ensured beyond one or two
downstream diameters. This loses the advantages offered by the Floquet stability
analysis in respect of the accuracy of the spanwise wavelength estimation.

The undulation of a single alternating vortex in the near wake can also be analysed
by the elliptic stability theory as performed by Walleffe (1992) and Landman &
Saffman (1987) to prove the existence of a preferred spanwise mode as a result of
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Figure 7. Iso-vorticity field at Re = 220, two-dimensional Navie-Stokes simulation (Allain et al.
1999), grid (266×126), showing the elliptic shape of alternating vortices and its geometric parameters
for the spanwise wavelength evaluation.

spanwise-periodic small perturbations applied on an elliptic vortex configuration in
the near wake. Leweke & Williamson (1998) have used Persillon & Braza’s DNS
data and results of the elliptic stability theory to assess qualitatively the preferred
wavelength expected for the spanwise undulation. In the present study, the two-
dimensional numerical results for the basic flow were produced in our research group
by Allain et al. (1999) with a much higher grid resolution (266× 126) than previous
simulations. This provides an accurate order of magnitude of the maximum vorticity
scale in the elliptic region and therefore an improved assessment of the spanwise
wavelength. The perturbed linearized viscous Navier–Stokes equations are considered
in the way described by Landman & Saffman (1987). It is proved that there exists a
predominant spanwise wavelength mode, which is amplified from a nominally two-
dimensional elliptic vortex configuration, subjected to specific geometric and dynamic
constraints. It is clear that the elliptic stability theory takes into account only implicitly
(through the shape of only one region of closed streamlines) the mode interaction
that physically comes from the whole alternating vortex pattern region. Indeed, this
interaction leads to a specific elliptic configuration of a near-wake alternating vortex
(figure 7), whose geometric and dynamic parameters (vorticity and shear) enter the
calculation of the secondary instability growth rate and the spanwise wavelength
evaluation. The solution of the system governing the marginal stability problem gives
the matrix M of Floquet multipliers µi by solving a standard ODE problem, and
from µi the total growth rate σT , according to Bayly (1986). Therefore, the elliptic
stability theory can be seen as a complementary way to the more complete Floquet
analysis for investigating the amplification of the secondary instability. The restriction
to only one elliptic vortex is of course a limitation, compared to the more general
Floquet analysis, whenever the latter is applied to a physically correct alternating
vortex pattern. The elliptic stability theory also takes into account the influence of the
viscous decay rate in the evaluation of the total growth rate according to Landman
& Saffman (1987). In the case of the secondary instability growth, there exists an
ensemble of inclinations θ for the wavenumber k for which the wave-vector of the
perturbations grows. Among these θ values, there exists an angle θmax corresponding
to the maximum growth rate. The parametric variation of θmax versus the Eckman
number Eγ = 2πνk2

0/g (k0 being the wave-vector integration constant) has been
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Figure 8. Spanwise wavelength of mode A versus Reynolds number, according to experimen-
tal studies reported by Williamson (1996) as detailed in the legend; 4, Barkley & Henderson
(1996), Floquet stability analysis. +, Present DNS; �· , present elliptic stability theory; �, present
Craik–Leibovich instability mechanism.

evaluated by Landman & Saffman (1987) and this variation is used in the present
study in conjunction with the two-dimensional simulation data. The marginal stability
curve is established through the relation Eγ = E∗γ (β) as a function of eccentricity. At
a fixed viscosity ν (corresponding in our case to Reynolds number 220) and vorticity
2γ = 2ωz (figure 7), β is determined for a given strain field, or equivalently by the
parameter α defining the ellipsis ratio, β = ε/γ = (α2 − 1)/(α2 + 1). In the case of the
cylinder’s elliptic vortex shape (figure 7) we find α = 0.2 and hence β = 0.6. Therefore,
the necessary and sufficient condition to have an elliptic flow, 0 < β < 1, is fulfilled.
The deduced length scale λz of the secondary instability is λz = 2π/k0 cos θ ≈ 2l for
moderate straining fields. The expected spanwise wavelength is λz = 2π/k0 cos θmax. It
can also be written as λz = l(1 + a2) tan θmax/2 ≈ 2.8 in the present case. This result
is reported in figure 8.

A complementary analysis of the origins of the present secondary instability can be
found by analogy with the Craik–Leibovich instability mechanism (Craik 1982a, b).
The principles of this mechanism are based on the Stokes drift sd and the effect
of spanwise-periodic small perturbations. Stokes drift occurs through the shearing
mechanism upstream of an undulated periodic flow (flow over waves or hills), sd =
(uL − uE), where uL is the Lagrangian mean velocity and uE the Eulerian one. The
presence of the wavy (x, y) pattern is decisive in the development of the Craik–
Leibovich instability, because it causes the difference between the Lagrangian-mean
and Eulerian-mean flows, which creates the longitudinal vorticity (Craik 1982b). The
Stokes drift is taken into account by means of the generalized Lagrangian mean
(GLM) equations of motion as shown by Andrews & McIntyre (1978a, b). The
perturbation of the two-dimensional periodic wavy flow by spanwise-periodic small
perturbations of type u′ = ∆Re(eσteiλz [û(y), v̂(y), ŵ(y)]) leads to solving the Rayleigh
equations to detect the most unstable spanwise wavenumber. The streamwise vorticity
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upstream, under the action of the spanwise small perturbations. (b) Spanwise evolution of the
vertical vorticity component ωy at point A (t = 800) according to the sketch on figure 10.

is therefore subjected to exponential growth, created by the action of the mean shear
that produces rotation and stretching of the vertical vorticity.

This mechanism is physically realizable, and was originally studied in the ex-
perimental and theoretical work of Jackson (1973). He showed that a flow over a
two-dimensional block systematically develops streamwise counter-rotating vortices
like the trailing vortices of a horseshoe configuration. More recent experiments by
Gong, Taylor & Dörnbrack (1996) also showed that the mechanism creating the
streamwise vortex pairs is related to the amplification of the spanwise-periodic small
perturbation of u velocity, of the type û ∝ eikz in the vicinity of the stagnation region,
leading to the development of longitudinal vorticity through stretching and tilting of the
vertical vorticity, as analysed in the work of Sadeh & Brauer (1980) and according
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Figure 11. Instantaneous streamline pattern in the near wake, illustrating the formation of a
‘wavy terrain’, Re = 220.

to discussions with J. C. R. Hunt (1999, personal communication). In the case of
the cylinder wake, this is schematically presented in the diagram of figure 9(a). The
present DNS indeed shows an amplification of the vertical vorticity in the vicinity of
the stagnation region, according to the quasi-periodic pattern along the span (figure 9b
and 10). The analogy with the cylinder wake can be further based on the existence
of the strong shearing mechanism generated upstream the wake by the obstacle, as
well as by the related Stokes drift. The wavy terrain downstream is formed by the
undulated streamline pattern (figure 11) due to the alternating vortices, over the whole
downstream distance.

This provides an evaluation of the streamwise wavelength λx due to the periodicity
of the von Kármán vortex pattern. This parameter, in conjunction with the free shear
layer thickness δ, enters the calculation of the most unstable spanwise wavenumber,
according to the results by Phillips, Wu & Lumley (1996). It is then possible to
derive that there exists a locus of a (minimum l – minimum α) combination at which
a significant growth rate σ1 occurs; l is the spanwise dimensionless wavenumber,
l = 2πδ/λz , and α the dimensionless streamwise wavenumber, α = 2πδ/λx. This locus
is given by Phillips et al. (1996) in their figure 5 for a 1/7-power law velocity profile,
and can be used to derive the expected spanwise wavenumber of the secondary
instability, as a function of the longitudinal wavenumber α. In the case of the cylinder
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Figure 12. Instantaneous longitudinal velocity profile at (a) x/D = 0 and b) x/D = 5; Re = 220,
two-dimensional case.

wake, to estimate the effective shear layer thickness δ related to this waviness, the
u velocity is plotted in at x = 5D (figure 12), corresponding to a crest of the wavy
configuration, as in the study by Phillips et al. (1996). The shear layer thickness is
measured from the y/D = 0.5 axis corresponding to the main shearing source due
to the cylinder shape. δ/D is found to be of order 0.6 and α of the order of 0.8,
given that λx = 4.7D from the two-dimensional basic flow simulation. The resulting
spanwise dimensionless wavenumber l is found to be 1.1. This yields λz = 3.4D for
the cylinder wake.

The feedback effect between the sustenance of the streamwise and vertical vorticity
is strongly taken into account by this instability mechanism and clearly shown by
the present direct simulation (Allain et al. 1999) where the amplification of upstream
vertical vorticity and downstream streamwise vorticity are shown as a strongly main-
tained spanwise-periodic mode. The Craik–Leibovich instability mechanism analyses
the birth of the streamwise-periodic vorticity by taking into account the nonlinear
effects through the inviscid mechanism described by the Rayleigh equations. The non-
linearity is not taken into account by the Floquet analysis or by the elliptic stability
theory. These effects are however strongly involved in the irreversible nature of the
three-dimensional bifurcations undergone by the present system. Therefore, this in-
stability analysis can be seen as a complement to the previously mentioned theories.
Although it is applicable in the regions of open streamlines (e.g. beyond the very near
wake), it involves the global interaction of modes coming from the alternating pattern
over a significant downstream distance in the wake.

The three types of instability processes mentioned above need the use of results from
the two-dimensional full Navier–Stokes simulation concerning the basic flow and all
these approaches perturb the alternating vortex configuration by spanwise-periodic
small perturbations. The wavelengths assessed by these theories provide results close
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Figure 13. Iso-pressure coefficient surfaces, Cp = −0.25, t = 820.

to those from a complete direct numerical simulation approach (figure 8). All the
instability theories mentioned lead to a complementary comprehension of the physical
mechanisms involved in the creation of the spanwise undulation of nominally two-
dimensional alternating vortex rows.

4. The natural vortex dislocations pattern
In this section, a substantial modification of the main spanwise undulation is

analysed as a systematic phenomenon of the three-dimensional transition. The in-
stantaneous iso-vorticity fields ωz and ωx are considered first. (The orientation of
vorticity components is shown in the sketch of figure 3.) During the time interval
[800; 820], figure 5(d, e), a remarkable phenomenon is seen, concerning the braid
configuration of the red and yellow spanwise vortices, which progressively ejects fluid
from the first violet main eddy. Simultaneously, this braid structure is displaced to
a lower position. Under this action, a clear discontinuity is obtained along the core
of the second main violet vortex, and this discontinuity persists until the time value
840 (figure 5f). The braid of streamwise vortices loses its spatial coherence during
the time interval [820; 840] (figure 5e, f) and simultaneously, the overall streamwise
vortex structures are much more fragmented even in near-wake positions. During
these phases of the flow, mode A is no longer regular. The break in the continuity of
the vortex core can also be seen in figure 13 where the iso-surfaces of the pressure
coefficient are presented. This local spanwise discontinuity is related to an adverse
pressure bump locally formed along the span, to be discussed in detail in § 4.2. These
effects are directly associated with the observed discontinuity in the main vortex
filaments. This fundamental modification occurring on the spanwise structure of the
main vortex rows in the near wake is called a natural vortex dislocation, due to a
very close similarity with the experimentally obtained flow visualizations of this kind
of structure by Williamson (1992), figure 14. In his study, the existence of ‘spot-like’
natural vortex dislocations was indicated, but their systematic development during
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Figure 14. Views of a natural vortex dislocation pattern: (a) results obtained by the present direct
numerical simulation; (b) experimental visualizations, Williamson (1992); (c) figure provided by
courtesy of C. Williamson, 1998, private communication: formation of vortex dislocation (rows
D, E) and a more chaotic state concerning the longitudinal small structures and mode A
undulation (rows C, B, A) follows by the return to more regular, quasi-periodic mode A undulation
(rows 1, 2, 3, 4).
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the three-dimensional transition has not been shown up to now. In Williamson’s
study only forced dislocations were analysed, in order to strengthen their dynamic
characteristics and their visibility. In the present study the vortex dislocations are
obtained naturally by means of the complete Navier–Stokes simulation. This is an
originality of the present study since, to our knowledge, natural vortex dislocations
have not been obtained yet by other three-dimensional simulations. Henderson (1997)
argues that these structures do not exist in the near wake in the present Reynolds
number range despite the experimental evidence. He depicts phase irregularities of
vortex rows especially at a higher Reynolds number (Re = 1000), which have no
similarity with the experiments.

As can be seen in figure 15 (t = 804 and 808), the occurrence of natural vortex
dislocations is regular in time and alternate positive (violet) and negative (green)
vortex dislocations are formed. Moreover, large-scale spanwise cells are formed due
to the appearance of more than one location of vortex dislocations along the span
(figure 5f). Of course, an even higher spanwise length would be needed in order to
determine the typical length of this kind of large cell, but this task would demand a
CPU time beyond the possibilities of the present study.

Summarizing the main features that qualify this modification as a vortex dislocation,
it can be stated that this kind of structure is a local break of continuity appearing
on ‘the spinal column’ of a main vortex row, previously subjected to a regular
spanwise undulation. This three-dimensional modification appears as a local junction
with the previous alternating vortex row, inducing locally a ‘number of events −1’
in the vortex shedding process and therefore a substantial fundamental frequency
reduction, quantified in § 4.1. It is found that mode A loses its spatial coherence
at phases of the flow following the formation of a vortex dislocation (figure 5f).
The present simulation illustrates variations in mode A waviness. At phases of the
flow following the development of vortex dislocations it can be seen that the braid
structure of streamwise vorticity almost disappears to give way to more fragmented
streamwise structures of even smaller vortices. In these intervals it can be seen that
the waviness of the main vortices becomes even more fragmented along the span,
but after the passage of the dislocation it is found that the vortex rows start to
form the main spanwise undulation again, as can be seen at larger times, figure 5(g),
t = 960. Moreover, as is shown in the time-dependent evolution of the velocity
components (figure 16, 20 top), the flow again attains its quasi-periodic character
after the passage of the dislocations. The positions 1 to 3 marked in figure 16 indicate
the spanwise region where vortex dislocations are developed. It is shown that w
component at these positions presents a considerable amplitude increase and loses its
periodic character during the time intervals corresponding to the formation of vortex
dislocations, to recover the quasi-periodic character at longer times. Amplitude and
frequency modulations are also obtained on the v velocity signals in the same time
intervals. Therefore, it is found that the dislocation phenomenon is indeed associated
with large-scale velocity fluctuation irregularities interspersed among quasi-periodic
regions, a feature that had been observed by Roshko (1954) in the same category
of flows and linked to the onset of three-dimensional effects. From this overall flow
evolution, it can be seen that, due to the vortex dislocations, the occurrence of mode
A has an intermittent character, which also explains the dispersion of experimental
wavelength values (figure 8). Therefore, the flow evolution reaches cyclically a quasi-
periodic stage, alternating with a more chaotic one in respect to the vortex dislocations
formation. This feature is in good qualitative agreement with flow visualizations by
Williamson (1992, figure 14c), where smaller scales become more fragmented in the
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Figure 15. Iso-vorticity surfaces ωx = ωz = 0.25 at (a) t = 804 and (b) t = 808, tracking the
successive formation of vortex dislocations on opposite-sign main vortices.
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Figure 22. Wavelet analysis of the v velocity signal: (a) at (x/D, y/D, z/D) = (1.5, 0.303, 0.1);
and (b) at (x/D, y/D, z/D) = (1.5, 0.303, 7.5).
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Figure 16. (a) v component versus time at 16 equidistant z positions along the span,
(x/D, y/D) = (1.52,−0.5). (b) w component. Spanwise positions 1, 2, 3 mark the region of for-
mation of dislocations. Amplitude and frequency modulation occurs within time interval 50–100
corresponding to the passage of a dislocation. The time-origin t = 0 corresponds to the dimensionless
time value 770.

downstream vicinity of the dislocation formed on rows E and D (see longitudinal
vortices on C, B, A main vortex rows) and the spanwise undulation is less regular on
these vortex rows than much farther downstream (rows 1, 2, 3, 4) where regularity is
progressively reached again. An absolutely regular appearance of the spanwise mode
would be in fact an artificial organized feature which scarcely happens naturally.

4.1. Time–frequency analysis

In this section, the modification of the orderly structure of the velocity and vorticity
signals is quantified as a function of time and of spanwise location, with a view to
tracking the development of vortex dislocations and their influence on mode A. This
task is carried out first by producing a spectral analysis of the temporal evolution
of the velocity and vorticity along the span; secondly, by means of wavelet analysis
and of autoregressive modelling techniques, in order to quantify the variations of
frequency and amplitude as a function of time; thirdly, by discussing the properties
of the different flow quantities on (z, t) maps.

4.1.1. Spectral analysis

In order to examine the global behaviour of the fundamental mode along the
spanwise direction, a fast Fourier transform was performed on the v component
signals at (x, y) coordinates equal to (x/D = 1.5, y/D = 0.303). 900 points were
used, corresponding approximately to 100 times the vortex shedding period. The
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Figure 17. Spectra of the v component along the span at point (x/D, y/D) = (1.5, 0.303).

dimensionless length of time series was 0.2 and the dimensionless frequency accuracy
was 0.005. Note that a considerable CPU time has been dedicated (typically about
100 hours on an IBM-SP2 computer) to the present analysis. In figure 17 the spectra
are shown along the spanwise direction. The fundamental frequency appears as the
predominant one at all z positions examined. It is found that the spectral energy of
the fundamental is not constant along the span and that it reduces considerably in
the regions where a vortex dislocation occurs (see figures 17 and 18 at z/D in the
vicinity of 2 and 4 < z/D < 10).

The spectra of the ωz vorticity component are analysed in figure 19. The same
behaviour as for the v component is obtained concerning the spectral energy distribu-
tion along the span. In these spectra, apart from the fundamental, the first harmonic
also appears as a less dominant yet distinguishable frequency. This is due to the
influence of the u component, present in the expression for ωz . This component is
affected simultaneously by the passage of both lower and upper alternating vortex
rows at the present (x, y) position. It is also found that less energetic distinguishable
frequency peaks appear in the vicinity of the fundamental, at lower and higher fre-
quency values, and that these peak amplitudes become more pronounced for spanwise
positions associated with the decrease of the fundamental’s spectral energy. As will be
discussed below, this energy reduction of the fundamental and the associated peaks
is related to the appearance of the vortex dislocations, an event which perturbs mode
A undulation and ‘pumps’ a fraction of the fundamental’s energy. This process will
be tracked by means of a time–frequency analysis of the signals issued by the direct
simulation.
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Figure 18. A perspective view of the spectral energy variations in the spanwise direction.
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Figure 20. Velocity signals showing modulations due to the passage of a vortex dislocation:
(a) results of the present direct simulation; (b) experimentally obtained velocity signal, Williamson
(1992).

4.1.2. Quantification of the fundamental frequency versus time

A typical signal of the v velocity component is presented in figure 20. The analysis
point at (x/D = 1.5, y/D = 0.303) is chosen in the (x, y) plane for all z positions
examined. In the following figures, the dimensionless frequency is normalized with
respect to the cylinder radius. The vertical velocity component is chosen for the
analysis, because it responds immediately to the passage of a von Kármán vortex
row and it is not ‘masked’ by the upstream convection velocity as in the case of the
u component. It is clearly seen that the structure of the signal is modified in the
dimensionless time interval [1000; 1050]. It is noticeable that a qualitatively similar
modulation occurs in the experimentally obtained time-domain signal (figure 20)
reported by Williamson (1992).

In the following, as well as a standard spectral analysis which gives the global
frequency behaviour of the time-dependent evolution of the different flow quantities,
it is essential to quantify the variations of frequency and amplitude versus time. This
is done by performing autoregressive modelling signal processing and wavelet analysis
on the signals obtained by the present direct simulation. In this part of the study, due to
an initial time value which had been inserted in the processing, the reader should note
that the time history from 945 to 1125 is equivalent to the time interval [760; 1040],
shifted by 185. In this way, a direct correspondence of the time values of figures 1 to 5
(the contour plots of the flow quantities) and of the figures of this section is obtained.

Figure 21 presents the frequency variation versus time of the v component, by
using an autoregressive model (AR), according to which the signal is modelled
by the response to a white noise passed through the autoregressive model. After
different tests, a fourth-order model has proved sufficient to describe the signal (see
the Appendix). This method is applied at successive time intervals (windows) of the
signal, the windows having a mean individual length of 20. This kind of model
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Figure 21. Time–frequency analysis of the v component signal by using autoregressive modelling
(AR): (a) (x/D, y/D, z/D) = (1.5, 0.303, 0.1); (b) (x/D, y/D, z/D) = (1.5, 0.303, 7.5).

conceptually ensures a high accuracy in the estimation of the frequency values versus
time, even for a moderate number of time-domain samples. In the present case, it
provides 10−4 time accuracy, as mentioned in the Appendix. In figure 21 it is clear
that the fundamental frequency undergoes a considerable and abrupt reduction within
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the time interval [1000; 1050], corresponding to the passage of the vortex dislocation
(figures 5d and 5e). This feature is confirmed by applying a Morlet wavelet analysis
to the same signal (see Grossman, Morlet & Paul (1985) and the Appendix of the
present article). In addition to the frequency reduction obtained (figure 22), the wavelet
analysis provides the distribution of the energy density on the time–frequency map.
Therefore, the wavelet analysis is expected to give the amplitude modulations in more
detail, whereas the autoregressive model analysis provides a better description of the
variations of frequency versus time. Hence the two techniques are complementary
in examining the signal modulations occurring during the passage of the vortex
dislocations. In figure 22 (see p. 19) the kernels of high density (dark red) correspond
to the parts of the signal before and after the dislocation occurrence, where the
fundamental mode is the most energetic and related to the highest amplitude values.
These parts of the signal correspond to the organized, coherent motion. The more
central area of the map is characterized by a density decrease, associated with the
amplitude decrease on the passage of the dislocation. It is also found that the area
of maximum density (dark red) moves towards lower frequency values within the
central area of the plot. This also illustrates the frequency reduction occurring in
the interval [1000; 1050], as obtained by means of AR modelling. This behaviour
indicates that the frequency decrease event, occurring upon the passage of the vortex
dislocation, is also characterized by a relatively strong degree of coherence and is
therefore associated with this kind of vortex structure.

The spectrum of the signal is also shown on these figures. The most predominant
frequency is the fundamental vortex shedding Strouhal one. In addition, a second
dominant peak corresponds to a slightly accelerated shedding phase which follows
the passage of the dislocation. This happens in order for the whole system, which
behaves as a global oscillator, to be able to compensate the delay caused to the
shedding mechanism by the vortex dislocation. This acceleration effect on the vortex
shedding is better shown by the AR model in figure 21(a). Moreover, the smaller
frequency peak on the left of the fundamental corresponds to the global effect of
the frequency decrease analysed above. In figure 21(b) (z = 7.5D) a second event of
frequency reduction appears towards the end of the time history.

By examining the spectrum at this position and also at a number of points along
the span, it can be seen that the spectral energy has been split into three peaks at
spanwise positions corresponding to formation of a vortex dislocation and so the
energy level of the fundamental has been reduced. This can be seen more clearly in
figure 21(b), where the three peaks are pronounced and correspond typically to a
beating phenomenon where the middle frequency corresponds to the mean frequency
0.5× (f1 + f2), f1 and f2 being the lower and the higher frequencies respectively. This
splitting and the associated amplitude modulation occur during the passage of the
vortex dislocation. f1 is due to the frequency delay as quantified by the autoregressive
analysis and by wavelets, because of the formation of the vortex dislocation. f2 is due
to the acceleration of the vortex shedding along the vortex rows below and above
the vortex dislocation in order to ‘catch up’ with the frequency delay and to realign
the value of the nominal Strouhal number in the areas without dislocations. These
sidebands in the frequency peaks are related to Floquet modes that would amplify
along the span as shown by a Floquet analysis of the basic two-dimensional alternating
flow at Re = 220 from the present Navier–Stokes simulation. The system would be
subjected to an upstream longitudinal non-uniform u velocity boundary condition
along the span, obeying a specific distribution of the u component as discussed at
the end of § 4, to produce the effect of the vortex dislocations. Also recall that from
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Figure 23. AR analysis of the ωz time-history at z/D = 0.7.

standard signal processing considerations, the splitting of the spectral energy into the
three peaks corresponds to a significant amplitude modulation in the time domain,
and this in fact happens in the interval [1000; 1050] as can be seen in figure 21(b),
where a second vortex dislocation occurrence is detected towards the end of the
time history. Therefore, the splitting of the spectral energy into three peaks (and the
associated amplitude modulation) occurs during the passage of the vortex dislocation
and a result of this distribution is, as expected, a reduction of the spectral energy
available to the fundamental. This behaviour characterizing the dislocation regions
can be seen in the spanwise representation of the spectral energy (figure 18). At all
the positions examined by means of autoregressive modelling analysis, each frequency
reduction is followed by an acceleration (frequency increase) of the fundamental
mode. This allows the overall vortex shedding process to ‘readjust’ its delay in order
to obey the global shedding frequency law corresponding to the present Reynolds
number. The frequency reduction and the amplitude modulation are illustrated by
both autoregressive modelling and wavelet analysis, the AR modelling showing more
intensely the frequency reduction and the wavelet analysis showing more clearly the
amplitude decrease, during the passage of a vortex dislocation.

Time series of the ωz vorticity are also examined by a time–frequency analysis
in figures 23 and 24(a, b). The vorticity signals are indeed a very good ‘tracer’ to
illustrate the time variations occurring within the spinal column of each main vortex
row, which may be considered as a solid solenoidal body, where the Biot-Savart law
qualitatively applies. It is found that the passage of a vortex dislocation is also asso-
ciated in this case with a noticeable frequency reduction of the fundamental mode,
and of a considerable amplitude modulation, quantified in the present vorticity com-
ponent signals. Figure 24(b) shows the same beat phenomenon, where the amplitude
modulation corresponds to a two-lobe wavelet configuration as for the v signal in
figure 22. The frequency reduction effect is shown in this configuration by the fact
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that the two lobes are not disposed on the same horizontal line, as would be the case
with just an amplitude modulation.

Therefore, by means of the analysis performed in this section, the present work
clearly indicates the tendency of the flow system to have a reduction in its fundamental
frequency during specific time intervals corresponding to the formation and advection
of a vortex dislocation structure. This confirms the tendency shown by experimental
data that a lower path of fundamental frequency variation versus Reynolds number
would be followed by the system if vortex dislocations occur. In figure 25 we have
plotted the mean value of the frequency reduction obtained, evaluated within the time
interval given above. This value is very close to the experimental path of the curve,
illustrating a global frequency decrease effect.

Having examined local variations in time and frequency domains along the span,
it is interesting to provide an overview of the effect of the vortex dislocations in a
space–time map. The overall time-dependent evolution of the spanwise flow structure
can be seen in figure 26a where iso-v surfaces are shown as a function of z and
time. So far, instantaneous images of mode A and other spanwise phenomena have
been shown. This new map allows the tracking of the propagation of the spanwise
structure in time. It can be seen that the propagation of the undulated spanwise
structure is not homogeneous in time, but there are phase incoherences in the
propagation of the fronts of mode A waves. The regions of positive and negative v
velocity alternate according to the Strouhal number variations discussed previously.
The topology of v contours has also mode A undulation. In a first time interval
of order [945; 980], the fronts of the transverse waves evolve quasi-homothetically
along the span. For time values higher than 1000, this undulation displays a slightly
perturbed and ‘ascending’ behaviour towards higher spanwise values versus time. This
is followed by the formation of the vortex dislocation and its effect on the Strouhal
number, which can be shown by means of the ωz vorticity maps (figure 26b). The
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Figure 26. (a) Iso-v contour map and (b) ωz vorticity component, on the (t, z)-plane, illustrating
the perturbation fronts to mode A and their convection velocity, due to the passage of vortex
dislocations. The colour scale indicates magnitudes.

decrease of the fundamental is seen in the evolution of the fronts in the interval
[1050; 1070]. It is linked to the local junction that produces the ‘number of events
−1’ in the spanwise area corresponding to the formation of a vortex dislocation
(the junction occurs for instance between the seventh and eighth green vortex rows,
forming the red regions in figure 26(b) and seen also in figure 5d–f). Below and
above the area of vortex dislocation along the span, the number of events does
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not diminish. This is also the case in experimental visualizations by C. Williamson,
personal communication (figure 14c), where the events are numbered. During the
phase of the motion corresponding to the dislocation passage, the perturbation of
mode A propagates quasi-linearly and the propagation velocity of this event is found
to be approximately equal to 0.0509. Afterwards, mode A is again formed. The
dislocation occurrence also seems to enhance the first subharmonic of wavelength
2lz . The quantification of the predominant wavelengths along the span is confirmed
by figure 27, where the wavenumber of the fundamental is plotted versus time.
The appearance of a subharmonic wavenumber is qualitatively similar to resonance
phenomena appearing in an excited shear layer (Ho & Huerre 1984; Freymuth 1966),
with the first subharmonic as the most energetic mode, as also predicted in that case
by the linear stability theory.

4.2. Study of spanwise mechanisms related to the appearance of natural vortex
dislocations

The above discussions concerning the dislocation structure raise the question of which
effects cause the main vortex row, already undulated according to mode A, to undergo
a further abrupt local change leading to vortex dislocation formation. It is reasonable
to suppose that the vortex row behaves as a ‘solid’ body, therefore subjected mainly
to pressure forces, since inviscid flow considerations are often used to analyse this
kind of vortex dynamics past bluff bodies. In an attempt to find the causes of vortex
dislocation, it is reasonable to examine the pressure coefficient modifications along
the span. These are indeed associated with the dislocation structure formation and
may be linked to pressure variations in the near-wall upstream region.
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Figure 28. (a) Spanwise evolution of the pressure coefficient and (b) longitudinal velocity
variation, at different points on the (x, y)-plane as shown in the sketch of figure 10.

Figure 28(a) shows the instantaneous pressure coefficient variations along the span,
obtained by the present DNS and plotted at selected (x, y) coordinates as shown in the
sketch and at a time value corresponding to occurrence of vortex dislocation near the
half-span distance. A striking effect is the formation of a pressure increase ‘bump’ in
the dislocation area (see variations at points d1 and d2; the position of points is shown
in figure 10). This local pressure increase prevents the main vortex row R1, originally
non-dislocated, from advancing as fast as its neighbouring regions below and beyond
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Figure 29. Sketch of the dislocated vortex rows: (a) the spanwise pressure evolution; (b) the
upstream separation longitudinal velocity spanwise evolution and (c) its schematic decomposition
in two parts.

the area z/R ∈ [10.5; 13.5] (see the sketch in figure 29). It is then expected that a local
discontinuity will be produced in the core of the vortex along the span in this area.
Another remarkable feature occurs in the upstream separation near-wake regions of
the flow, as shown for points D, B and A. An opposite-sign pressure bump is formed
in the same z/R region. Under this favourable pressure gradient, the flow advances
faster here. It is thus worth examining the corresponding u velocity component
variations along the span in figure 28(b). Bump formation is again obtained, 180◦
out of phase compared to the pressure, as it would be expected by Bernoulli’s
equations. Examining the u variation at position D for instance, it is found that the
central region is characterized by a distinct u velocity increase, superimposed on the
undulated spanwise pattern. Therefore, the local Strouhal number of the downstream
vortex shedding is expected to increase in this central area and to decrease in the
immediate neighbouring spanwise locations. This difference will unavoidably create
a dislocation region. This instantaneous effect is also linked to the clearly obtained
time-domain frequency decrease within the specific time intervals corresponding to
the passage of the vortex dislocation (quantified in § 4.1). Vortex dislocations were
first shown in experiments by Gaster (1969) in flows around cones. The spanwise
variation of diameter, due to the form of the obstacle in this case, was responsible for
the development of a change in the average frequency along the cone. In the cylinder
wake, the difference in frequencies is an inherent characteristic, due to local interaction
among the three velocity components (and therefore among the vorticity components).
As shown in figure 16, the local production of higher r.m.s. spots of the w component
along the span creates an important local variation of the u and v components, as
can be deduced from the continuity equation and conservation of vorticity for the
present elliptic and incompressible flow. The present DNS study shows that under
the effect of the conservation mechanisms, the response of the dynamic system to all
the perturbing factors to which it is subjected is a selective spanwise organization
of the u distribution (that originally was uniform), according to an orderly spanwise
pattern (see point D variation), causing the Strouhal number variation.

This may be schematically represented as a combination of mode A regular un-
dulated pattern, scaling as cos(βz) for z ∈ [0; 24R], plus a bump pattern modelled
by a function of the form [cos(β1z) + const], for z ∈ [10.5; 13.5] (see the sketch in
figure 29). Therefore, the dislocation is a consequence of a spanwise perturbation of



Vortex dislocations in three-dimensional wake transition 33

the form mentioned, acting on a regularly spanwise-undulated u-velocity profile. This
behaviour, in relation to the previous discussion on the secondary instability, may lead
to an interesting study analysing preferred factors in the development of vortex dis-
locations by stability theories and by DNS. In this context, the basic two-dimensional
alternating flow obtained by the Navier–Stokes simulation can be perturbed by Flo-
quet modes, and the Floquet stability analysis can be used in conjunction with a
non-uniform u velocity boundary condition along the span, reproducing the generic
bump configuration, to ensure the conditions of appearance of vortex dislocations.
Floquet analysis would reveal amplification of the predominant modes including the
side-bands detected in the spectrum along the span by the present DNS.

5. Conclusions
The present study is a continuation of our work on analysis of three-dimensional

transition in flows around bluff bodies and it focuses on understanding how three-
dimensional transition features develop from nominally two-dimensional flow config-
urations. This study concerns Reynolds number 220, a value in a highly interesting
range with respect to the development of fascinating transition phenomena. In the
present work the DNS approach identifies the first stages in the three-dimensional
transition, because it is able to examine the flow history from the early development
of the three-dimensional mechanisms, whereas these stages evolve in very short time
scales during a physical experiment. The following successive steps are determined,
after a careful study of the numerical parameters and of the influence of upstream
small initial disturbances applied along the span.

(i) Amplification of the w velocity component (velocity in the spanwise direction)
as a function of time, whose early evolution is proven to be linear (exponential growth),
before displaying nonlinear and saturation stages, accompanied by organization of
the w iso-contours into distinct regular cells along the span.

(ii) Consequent amplification of streamwise vorticity, also organized along the
span in quasi-periodic counter-rotating ‘mushroom-like’ cells.

(iii) After a substantial strengthening of this pattern, the appearance of a regular
spanwise undulation (mode A), modifying the originally rectilinear, two-dimensional
alternating vortex rows.

(iv) Under a bursting increase of the w-component amplitude during specific time
intervals, a natural vortex dislocation starts to develop, forming a break in the ‘spinal
column’ of the undulated von Kármán vortex rows in the near wake.

(v) The natural vortex dislocations are found to occur repetitively in the flow
transition. More chaotic and quasi-periodic stages alternate as a function of time,
following respectively the development and sweeping downstream of the vortex dis-
locations.

The appearance of the first regular undulation along the span and the corresponding
wavelength are analysed in this study by the DNS approach and by an analogy to the
Craik–Leibovich instability mechanism, initially conceived for studying wave-induced
longitudinal-vortex instability in shear flows. The application of this theory to the
three-dimensional growth of the secondary instability in the cylinder wake and the
assessment of the corresponding predominant wavelength add a new element to our
knowledge in the literature. A comparative discussion among this theory, the elliptic
instability theory and the Floquet stability analysis is provided, on the relative benefits
and limitations of each approach.
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By using a rather high spanwise length (12D) compared to other simulations,
without compromising the refinement of the grid in the (x, y)-plane over a significant
distance downstream, the present study proves the existence of vortex dislocations as
an inherent feature of the flow transition that modifies the regular spanwise undulation
and has a repetitive and systematic appearance in the three-dimensional transition in
the near wake. This is an original contribution of the present study that reinforces
the experimental observations by Williamson (1992) on ‘spot-like’ natural vortex
dislocations and removes controversies between other direct numerical simulations
concerning the existence of this kind of structure.

By performing appropriate signal processing techniques (autoregressive modelling
and wavelet analysis) the role of natural vortex dislocations in the three-dimensional
transition is analysed. It has been found that the vortex dislocations occur long after
the full development of the mode A pattern. They constitute a three-dimensional
further modification of the von Kármán vortex rows during the three-dimensional
transition. The definition of natural vortex dislocations is provided by the present
study: they consist of a break of continuity in the main core of the vortex row
associated with a local junction with the previously formed von Kármán vortex. This
corresponds locally along the span to a (number of events N − 1) in respect to the
shedding of vortices. This study proves that the development of these structures is
associated with a drastic fundamental frequency reduction and amplitude modulation,
quantified by the signal processing techniques. A lower path of the Strouhal–Reynolds
number relationship is found to be followed by the flow system when natural vortex
dislocations appear. This proves a conjecture from experimental works that the
fundamental frequency tends to display a lower branch in this Reynolds number
range, when vortex dislocations appear. In the present study, it is remarkable that
a very good agreement with the experiments is obtained for the Strouhal number
concerning the path with dislocations.

A significant result after a long time, including an order of 20 periods of the vortex
shedding, is the enhancement of the first subharmonic wavelength of the spanwise
undulation, as a most energetic mode. This feature can be seen as an analogy to the
appearance of the first subharmonic as a predominant mode in a free shear layer,
due to the occurrence of the vortex pairing phenomenon in two dimensions. In the
present context, it can be conjectured that vortex dislocation formation, characterized
by a local ‘junction’ of the main vortex row with the previous one, acts in a similar
way as the vortex ‘pairing’ phenomenon in two dimensions, in the sense of enhancing
the appearance of the subharmonic spanwise mode.

As well as the amplitude diminution along the span, it is shown that the dislocation
region is characterized by areas where the pressure coefficient increases to a local
maximum. The present study depicts the organization of the upstream longitudinal
velocity distribution along the span as a generic bump configuration that is associated
with the local Strouhal number reduction downstream, in the region of where vortex
dislocations appear. This preferential shape may be used as an upstream boundary
condition in future direct numerical simulation studies, to examine factors in enhance-
ment or attenuation of vortex dislocations during the three-dimensional transition
process.

This work has been carried out in the research group EMT2 (Ecoulements
Monophasiques, Transitionnels et Turbulents) of the Institut de Mecanique des Flu-
ides de Toulouse. The authors express their gratitude to Professor C. Williamson of
Cornell University for very useful discussions concerning the vortex dislocation phe-
nomenon and for including Dr Persillon in his group during 1995–1996. The authors



Vortex dislocations in three-dimensional wake transition 35

are grateful to Professor J. C. R. Hunt (University of Cambridge) concerning very
helpful discussions on the spanwise mode development in relation to the instability
mechanisms. In particular, the study involving the Craik–Leibovich instability mech-
anism had its inception after a discussion with Professor Hunt during his stay in
IMFT in July 1998 and during the Direct and Large Eddy Simulation symposium at
INI, Cambridge, in May 1999. The authors thank Professor M. Provansal (IRPHE)
for very useful discussions on three-dimensional transition features in bluff-body
wakes and on global instability analysis. Part of the present study, corresponding to
the post-doc stay of H. Persillon at Cornell University has been sponsored by the
DGA-DRET, Grant No 93811. Part has also been sponsored by the CNRS-DAAD
French-German action ‘PROCOPE’, No 97184, in collaboration of IMFT with the
Technische Universität of Berlin (Professor F. Thiele). Part of the shear-flow insta-
bility figures use results from a first stage of the PhD thesis of J. Allain under the
supervision of M. Braza. We are grateful to the National computer centres CINES
and IDRIS, as well as to Cornell’s Supercomputing Centre for having provided sub-
stantial CPU time. The computing services of IMFT (J. P. Bombaud, G. Leblanc,
C. Nicolas, N. Valentin) and the reprographics service of IMFT (J. Rambouil) have
been of helpful assistance.

Appendix. Time–frequency analysis
Time–frequency analyses were performed using continuous wavelets and autare-

gressive (AR) modelling. A brief review of these techniques is provided in this section.

A.1. Wavelet analysis

Wavelet analysis is a time-scale non-parametric tool which allows the tracking of
frequency variations. A comprehensive review of wavelet transform and its application
to fluid dynamics can be found in Grossman et al. (1985) and Farge (1992). Given
the wavelet Φ, and the time series u, the wavelet transform U is defined by Flandrin
(1993):

U(a, b) =
a−p√
CΦ

∫
Φ

(
t− b
a

)
u(t)dt (A 1)

=
a1−p
√
CΦ

∫
Φ̂∗(af)û(f)e2iπfbdf (A 2)

where a is called the scale factor and b the translation factor. Hats denote Fourier
transforms, CΦ is a real constant depending on the choice of wavelet function Φ; p
is a parameter which is usually equal to 1/2 for theoretical reasons. Since wavelet
transformation is an isometry one can write the inverse transform and a Parseval-like
equality:

u(t) =
ap−3

√
CΦ

∫∫
U(a, b)Φ

(
t− b
a

)
da

a2
db (A 3)∫

|u|2dt =

∫∫
|U(a, b)|2 da

a2
db =

∫∫
S(a, b)dadb (A 4)

where S(a, b) defines a real-valued time-scale density. In a time–frequency framework,
these formula are usually slightly altered so that parameters a and b can be related
to frequency and time. Indeed, it can be shown that for p = 1, S1 = |U(f0/a, b)|
may be regarded as a time–frequency density called a scalogram where f0 is the
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Resolution ∆τ (time units) ∆f (non-dim. freq.)

Wavelet [46;59] [0.015;0.019]
AR 40 10−4

Table 1. Time and frequency uncertainties.

wavelet’s central frequency in Fourier space. Roughly speaking, on a scalogram, a
high-magnitude region around (f0/a1, b1) shows energy concentrations around time
t1 = b1 at frequencies close to f1 = f0/a1.

In this study, the Morlet wavelet was used. This wavelet is analytically defined in
time or frequency domains by

Φ(t) = e2iπf0te−t
2/2 − e−2π2f2

0 e−t
2/2, (A 5)

Φ̂(f) = e−2π2(f−f0) − e−2π2f2
0 e−2π2f2

. (A 6)

The second subtracted terms on the right-hand side ensure that the Morlet wavelet has
zero time mean. This condition is required for any admissible wavelet. The parameter
f0p determines the central frequency of the Morlet wavelet in Fourier space. In
practical situations, f0 is chosen to be equal or greater than 1 so that numerically,
the Morlet wavelet is well approximated by

Φ(t) = e2iπf0te−t
2/2, (A 7)

Φ̂(f) = e−2π2(f−f0). (A 8)

f0 must also be chosen with respect to the frequency domain of interest and the
required time–frequency resolution. As a non-parametric method, the resolution of
a scalogram is limited by the uncertainty relation ∆f∆τ > k where ∆f and ∆τ are
related to the time and frequency extent of the wavelet. The smallest value of k is
obtained for Gaussian functions and depends on the way ∆f and ∆τ are defined.
Possible choices for ∆f and ∆τ might respectively be the width of the modulus of the
wavelet and its Fourier transform at mid-height. In that case, k = 4 ln 2/π. If f0 > 1,
according to equations (A 7) and (A 8), Morlet wavelets are Gaussian and hence their
time–frequency resolution product is exactly equal to k. However, one must bear in
mind that, due to the inherent time-scale nature of wavelet analysis, frequency and
time resolutions are not constant over the time–frequency map (though their product
is). On a wavelet scalogram, lower frequencies possess better frequency resolution but
poorer time resolution. The situation is opposite for higher frequencies. Nevertheless,
the relative frequency resolution Q = ∆f/f remains constant for a given wavelet
once its various parameters (here f0) are chosen. In this study, a central frequency
f0 between 2.0 and 2.5 leading to a relative frequency resolution Q between 0.15 and
0.19 was chosen. Therefore, the scalograms presented here have ∆f = fQ frequency
and ∆τ = k/(fQ) time uncertainties, depending on the value of the frequency f.
Global frequency and time resolutions may roughly be evaluated for f = 0.1 which
is the dominant frequency in the time series analysed. Doing so, numerical values of
0.015 6 ∆f 6 0.019 and 46 6 ∆τ 6 59 were obtained for the present study. These
values are to be compared to those of AR modelling (see table 1) which will be
discussed in the next subsection.
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A.2. AR modelling

As mentioned above, in conjunction with wavelet analysis, autoregressive (AR) analy-
sis was also applied to convert time series into time–frequency maps. AR modelling
is a widely used signal processing tool. One of its many applications is to provide
high-resolution spectral descriptions of time series. It also allows a time–frequency
extension which is of interest in this study.

A.2.1. Stationary time series

In a stationary framework, given a time series {un}n∈Z representing a sampled signal
at rate ∆t, an AR model of order N is such that

N∑
k=0

akun−k = bn (A 9)

where bn is a discrete white noise. Very few and special time series may be exactly
modelled in this manner. Physically speaking, u(t) should be obtained from an inertial
mechanism excited by a random input. A special case of interest is the sum of n pure
sine waves which follows (A 9) with N = 2n and b = 0. In general, a finite-order AR
model is only an approximation or a conceptual model where its order must be chosen
high enough to enhance the quality of the approximation. For instance, modelling
noisy sine waves requires an infinite-order AR model. Various algorithms allow the
computation of model parameters an by minimizing the white noise variance σ2. This
latter gives quantitative information about how well the time series was fitted by the
model. There are also several criteria which allow one to judiciously determine the
order of the AR model. The most commonly used criteria are due to Akaike (1974).
They are essentially based on a balance between precision and reliability since higher
orders provide better model adjustment but poorer ak estimation. The criterion used
here was the cost function Ak(N):

Ak(N) =
L+N

L−Nσ
2(N) (A 10)

where L is the number of samples of the time series over which the model parameters
ak were estimated. As the model order N grows, σ2 decreases while the ratio (L +
N)/(L − N) increases. Thus, this empirical criterion helps find the model order in a
systematic way. Once the correct AR model is found, it is straightforward to show
that the power spectral density P (f) of the time series is readily given by the model
parameters ak and σ:

P (f) =
σ2

|1 +
∑N

k ake
−2iπfk∆t|2 . (A 11)

From this equation it is clear that AR models can accurately render only special
spectral behaviours. For instance, there is no hope of finding −5/3 spectral behaviours
in AR modelling data extracted from fully turbulent flows. Nevertheless, in many
applications where only narrow-band or quasi-periodic behaviours are of interest,
AR modelling gives fairly good results. The main advantage of AR modelling is
that unlike classical non-parametric tools such as Fourier analysis, the frequency
resolution is not directly limited by the time series length. If the modal parameters ak
are correctly fitted to the time series, the power spectrum is obtained with virtually
infinite accuracy. Thus, high-resolution spectra may be computed for short time series.
It can be shown that the frequency resolution at −3 dB (∆f3dB) scales with γ−1N−2
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for a monochromatic noisy sine wave where γ is the signal–noise ratio:

∆f3dB ∝ 1

γN2
. (A 12)

Hence with increasing γ and N, the spectral density P (f) tends to an ideal zero-width
Delta function. In fact, from (A 11), it can be shown that for a noisy sine wave of
requency f0, among the N complex roots of

xN +

N∑
k=1

akx
N−k (A 13)

one pair of conjugate roots tends to e±2iπf0∆t. In other words, the sine wave is taken
into account by a pair of complex conjugate poles of the AR model which tend to
the unit circle. The AR model is supposed to behave in a similar manner in the
case where several well separated Castanié (1988) harmonics are present. Harmonic
components can then be extracted from pairs of poles near the unit circle. Therefore,
an AR model of order N = 2n is sufficient to extract n harmonics. The choice between
pole or spectral density representation is dictated by the signal to noise ratio and
the signal content. If γ is high enough and the time series is essentially made of
pure sine waves, an AR model of order N > 2n is quite sufficient. While the power
spectral density P (f) of such a model might not give narrow enough frequency peaks,
frequency recovery from poles would be very accurate. On the other hand, for noisy
and complex time series containing modulations, bursts, etc., a high-order model
would be necessary. There, pole representation would not be reliable since there is no
clear one-to-one relation between poles and harmonic components. However, a high
enough order model (N � 2n) would entail a good power spectral density P (f) with
sharp and well-defined frequency peaks. From this discussion, it appears that γ is an
important parameter in AR modelling. Though in almost all practical situations its
value is unknown, algorithms usually provide an estimate of noise variance σ2 which
may be used to compute an approximate value of γ.

A.2.2. Time-varying spectra

The high-frequency resolution feature of AR models is of appreciable interest in
time–frequency analysis. Namely, one models the signal over a time-limited interval
or window without significant loss of frequency resolution despite the possibly short
length of the window. Spectral time variations may then be tracked by moving
the window along the time series and by watching the AR model parameters. The
window length should be short enough to detect fast temporal changes and long
enough to allow good enough signal modelling. In all cases, it should contain at least
N time samples in order to uniquely define an AR model of order N. It is possible
to use overlapping windows to increase the temporal rate of frequency estimations.
Such a moving window AR modelling entails a time–frequency map where the
time resolution is given by the length of the moving window and the frequency
resolution by the model order and signal–noise ratio γ as discussed previously.
Coming back to the present study, an examination of velocity and vorticity plots
against time showed that frequency changes could happen over one or two periods
T of the fundamental oscillation. In other words, their stationary time scale was
of the order of the inverse of the Strouhal number which was about 0.1. In order
to get a good model convergence, windows of length 40 time units (≈ 4T ) were
chosen. However, in order to get a closer time tracking of frequency variations, a
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Figure 30. Evolution of the cost function versus the model order, for (a) the v velocity
and (b) the ωz vorticity.

50% overlap between consecutive windows was allowed. This means that frequency
evaluations were updated every 20 time units (100 time samples) with windows of
length 40 time units (200 time samples). This resulted in step-like time–frequency
maps which were obtained through pole representation. Due to overlapping windows,
each step represents a half-window and contains extra frequency information about
its right-hand neighbour. This prevents abrupt frequency jumps which could, for
instance, stem from non-overlapping windows of length 20 time units. Finally, the
last steps on time–frequency maps are missing since their computation would have
required a longer data length. Rather than computing over a half-width window or
zero-padding the data to obtain a full-length window, frequency estimation over the
last step was simply omitted.

Model orders were chosen with respect to Akaike’s criterion (A 10). Figures 30(a)
and 30(b) show the evolution of the cost function Ak versus the model order for typical
windows of 200-sample long velocity and vorticity time series. As can be seen, a fourth-
order model is sufficient for the velocity component v while an order of N = 50 is
necessary for the vorticity ωz . A close examination of v revealed indeed that only one
or two harmonic components were energetically significant; v was almost noise-free
and presented rather smooth amplitude and frequency modulations. Vorticity ωz time
series, on the other hand, had richer spectral content and presented sudden jumps
when dislocation occurred. Therefore, they required much higher model orders. In
both cases, the estimated noise power was very low and signal to noise ratios were
larger than 103. According to (A 12), the −3 dB frequency resolution was less than
10−4 for v and 10−6 for ωz . These very high degrees of accuracy should not conceal the
fact that (A 12) does not rigorously apply when several harmonics are present. As a
matter of fact, the task of predicting frequency resolution of such models is not an easy
one. While the subject remains controversial (Duvaut 1994), empirical results are often
applied. Here, an accuracy of 10−4 seemed a reasonable value for both v and ωz time
series. These values along with those of wavelet scalograms are collected in table 1.
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